
ON SECOND 2-DESCENT AND NON-CONGRUENT NUMBERS

YI OUYANG AND SHENXING ZHANG

Abstract. We use the so-called second 2-decent method to find several se-
ries of non-congruent numbers. We consider three different 2-isogenies of the
congruent elliptic curves and their duals, and find a necessary condition to
estimate the size of the images of the 2-Selmer groups in the Selmer groups of
the isogeny.
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1. Introduction and main results

Let n be a fixed positive square-free integer and let Ei and E′
i (i = 1, 2, 3) be

the elliptic curves
E1 : y2 = x3 − n2x, E′

1 : y2 = x3 + 4n2x,

E2 : y2 = x(x+ n)(x+ 2n), E′
2 : y2 = x3 − 6nx2 + n2x,

E3 : y2 = x(x− n)(x− 2n), E′
3 : y2 = x3 + 6nx2 + n2x.

It is well known that n is a non-congruent number if and only if any one (or
equivalently all) of the above elliptic curves has Mordell-Weil rank zero. In this
paper we shall use the so-called second 2-descent to bound the rank by the image
of 2-Selmer groups in the Selmer groups of the isogenies. As a consequence we find
several series of non-congruent numbers.

We start with an overview of notation. For p a prime and x a rational or p-adic
number such that ordp(x) is even, the modified Legendre symbol is(

x

p

)
:=

(
xp− ordp(x)

p

)
. (1.1)
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Thus (p ) defines a homomorphism from {x ∈ Q×/Q×2 : ordp(x) is even} to {±1}.
Similarly for an integer m ≥ 2, the Jacobi symbol

(
m

)
is modified to be a multi-

plicative homomorphism from {x ∈ Q×/Q×2 : ordp(x) even for all p | m} to {±1}.
Let [ x

m

]
:= (1−

( x
m

)
)/2. (1.2)

The symbol
[
m

]
defines an additive homomorphism from {x ∈ Q×/Q×2 : ordp(x)

even for all p | m} to F2, which we call the additive Jacobi (or Legendre if m = p)
symbol.

We let m be the odd-part of n, i.e., n = (2, n)m, where (a, b) denotes the greatest
common divisor of nonzero integers a and b. Suppose m = p1 · · · pk is the prime
decomposition of m.

We let A be the k × k matrix with (i, j)-entries
[
pj
pi

]
for i 6= j and (i, i)-entries[

m/pi
pi

]
, and

C = diag{
[
−1

p1

]
, · · · ,

[
−1

pk

]
}, D = diag{

[
2

p1

]
, · · · ,

[
2

pk

]
},

−→
0 = (0, · · · , 0)T,

−→
1 = (1, · · · , 1)T.

Moreover, all matrices and vectors in this paper are defined over F2. For −→v =
(v1, · · · , vk)T ∈ Fk2 , we set

d(−→v ) :=
∏

i: vi=1

pi.

In particular, d(−→0 ) = 1 and d(
−→
1 ) = m. Conversely, for d a factor of 2m, we let

−→v (d) := (v1, · · · , vk)T such that vi = 1 if pi | d.

Theorem 1.1. (1) Assume n ≡ 1 mod 8, pi ≡ 1 mod 4 and rank A = k−1. Assume
−→v is a root of the equation A−→x = D−→

1 and let d = d(−→v ). Write 2d = τ2 + µ2 and
choose

√
−1 in Z/nZ such that p | τ −

√
−1µ for all p | d. If

[
τ+

√
−1µ
n

]
+
[
2
d

]
= 1,

then n is a non-congruent number.
In particular, if pi ≡ 1 mod 8, rank A = k − 1 and

(
1+

√
−1

n

)
= −1, then n is a

non-congruent number.
(2) Assume m ≡ 1 mod 8, pi ≡ 1 mod 8 and rank A = k−1. Write m = 2µ2−τ2.

If
(

2+
√
2

m

)
= −1, then n = 2m is a non-congruent number.

Remark. Note that A is singular since A−→1 = 0. Thus the condition rank A = k− 1
in (1) implies that the image of A in Fk2 is the hyperplane x1 + · · · + xk = 0, in
which D−→

1 lies. Hence the equation A−→x = D−→
1 is solvable and −→v and −→v +

−→
1 are

its two roots. If we replace −→v by −→v +
−→
1 , then d, τ,mu, i =

√
−1 will be replaced

by d′ = n/d, τ ′, µ′ and i′ =
√
−1 respectively. One can check that[

τ ′ +
√
−1µ′

n

]
+

[
2

d′

]
=

[
τ +

√
−1µ

n

]
+

[
2

d

]
,

(see [OZ14] Remark 4.7).
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Example 1.2. In (1), let n = 5×13×41, then A =
(

1 1 0
1 0 1
0 1 1

)
is of rank 2, −→d = (1, 0, 0)T,

d = 5, n/d = 533, 2d = 32 + 12, 2n/d = 292 + 152,[
3 +

√
−1

5

]
= 0,

[
3 +

√
−1

13

]
= 1,

[
3 +

√
−1

41

]
= 1,

[
29 + 15

√
−1

5

]
= 0,

[
29 + 15

√
−1

13

]
= 1,

[
29 + 15

√
−1

41

]
= 1,

Thus
[
3+

√
−1

n

]
+
[
2
5

]
=
[
29+15

√
−1

n

]
+
[

2
533

]
= 1 and 5× 13× 41 is non-congruent.

Theorem 1.3. Let n = (2, n)m ≡ 1, 2, 3 mod 8, m = p1 · · · pk.
(1) Assume pi ≡ 3 mod 4. If the equations (A2+A+D)−→x =

−→
0 ,

−→
1 have together

at most 2 solutions, then m is non-congruent. If the equations ((A + D)2 + A)−→x =
−→
0 ,

−→
1 ,D−→

1 ,D−→
1 +

−→
1 have together at most 2 solutions, then n = 2m is non-

congruent.
(2) Assume pi ≡ ±3 mod 8. If the equations (A2 +AC+ C)−→x =

−→
0 ,

−→
1 , C−→1 ,C−→1

+
−→
1 have together at most 2 solutions, then n = m is non-congruent. If the

equations (A2 +AC+ I)−→x =
−→
0 ,

−→
1 ,C−→1 ,C−→1 +

−→
1 have together at most 2 solutions,

then n = 2m is non-congruent.
(3) Assume pi ≡ ±3 mod 8. If the equations (A2 + CA + C)−→x =

−→
0 ,

−→
1 have

together at most 2 solutions, then n = m is non-congruent. If the equations (A2 +

CA+I)−→x =
−→
0 ,C−→1 have together at most 2 solutions, then n = 2m is non-congruent.

A special case of the above Theorem is the following theorem:

Theorem 1.4. Suppose n = (2, n)m ≡ 1, 2, 3 mod 8 and m = p1 · · · pk.
(1) If pi ≡ 3 mod 4 and A2+A+D is invertible, then n = m is a non-congruent

number.
(2) If pi ≡ ±3 mod 8 and A2 + CA + C is invertible, then n = m is a non-

congruent number.
(3) If pi ≡ ±3 mod 8 and A2 + CA + I is invertible, then n = 2m is a non-

congruent number.

Example 1.5. Suppose pi ≡ 3 mod 8 in the above theorem, then n = m or 2m are
non-congruent numbers if A2 + A + I is invertible. In particular, if

(
pi
pj

)
= 1 for

1 ≤ i < j ≤ k, then A is upper triangular and A2 + A + I is invertible, thus m is a
non-congruent number and so is 2m if k is even. The odd case was first discovered
by Iskra in [Isk96].

Moreover, in this way, we can construct an infinite set T of primes congruent to 3
(mod 8), such that the product of any finite subset of primes in T is a non-congruent
number, for example,

T = {3, 11, 83, 107, 347, 2939, 3539, 10667, 12539, 29147, . . . }.

2. Computation of the Selmer groups

2.1. Second 2-descent method. We first recall the second 2-descent
method of computing the Selmer groups of elliptic curves (cf. [LT00] pp. 232–
233, [BSD65] §5 and [Sil09] X.4).
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For an isogeny φ : E → E′ of elliptic curves defined over a number field K, the
Mordell-Weil group, the Selmer group and the Shafarevich-Tate group are related
by the fundamental exact sequence

0 → E′(K)/φE(K) → S(φ)(E/K) →Ш(E/K)[φ] → 0. (2.1)

Moreover, if ψ : E′ → E is another isogeny, for the composition ψ ◦ φ : E → E, we
have a commutative diagram of exact sequences (cf. [XZ09] p. 24):

0

��
0 // E′(K)/φE(K) //

ψ

��

S(φ)(E/K) //

ψS

��

Ш(E/K)[φ] //

��

0

0 // E(K)/ψφE(K) //

��

S(ψφ)(E/K) //

res
��

Ш(E/K)[ψφ] //

��

0

0 // E(K)/ψE′(K) //

��

S(ψ)(E′/K) //Ш(E′/K)[ψ] // 0

0

(2.2)

We denote by S̃(ψ)(E′/K) the image of res : S(ψφ)(E/K) → S(ψ)(E′/K). If φ is
of degree n and ψ is its dual isogeny, then by the above diagram, the computation
of the Selmer groups S and S̃ provides a way to obtain the (weak) Mordell-Weil
groups and Shafarevich-Tate groups of E and E′.

In the sequel we suppose K = Q, and for a, b ∈ Q, suppose
E = Ea,b : y2 = x3 + ax2 + bx,

E′ = E−2a,a2−4b : y2 = x3 − 2ax2 + (a2 − 4b)x.

Then

φ = φa,b : E → E′, (x, y) 7→
(
y2

x2
,
y(b− x2)

x2

)
is an isogeny of degree 2. Let ψ be the dual isogeny of φ, then ψ = λ ◦ φ−2a,a2−4b

where λ : E4a,16b → Ea,b, (x, y) 7→ (x4 ,
y
8 ) is an isomorphism.

Remark. We shall compute the Selmer groups S(φ)(E/Q), S̃(φ)(E/Q) (for the
isogeny φ ◦ ψ in the above diagram), S(ψ)(E′/Q) and S̃(ψ)(E′/Q) (for the isogeny
ψ ◦ φ) in the following. However, because of the fact ψ = λ ◦ φ−2a,a2−4b, the
computation for ψ is more or less the same as for φ, just interchanging (a, b) with
(−2a, a2 − 4b).

Let S be the finite set of places {∞, p | 2b(a2 − 4b)} and Q(S, 2) := {b ∈
Q×/Q×2 | ordp(b) ≡ 0 mod 2 for all p /∈ S}. The set Q(S, 2) is represented by the
set of squarefree factors of 2b(a2 − 4b). From now on we identify these two sets.

Lemma 2.1 ([Sil09], X.4). Let Cd and C ′
d be the curves

Cd : dw
2 = d2 − 2adz2 + (a2 − 4b)z4, C ′

d : dw
2 = d2 + adz2 + bz4.
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Then the Selmer groups S(φ)(E/Q) and S(ψ)(E′/Q) can be identified with
S(φ)(E/Q) = {d ∈ Q(S, 2) : Cd(Qv) 6= ∅, ∀v ∈ S},

S(ψ)(E′/Q) = {d ∈ Q(S, 2) : C ′
d(Qv) 6= ∅, ∀v ∈ S}.

Lemma 2.2. Let d ∈ S(φ)(Ea,b/Q). Suppose (σ, τ, µ) is a nonzero integer solution
of dσ2 = d2τ2 − 2adτµ + (a2 − 4b)µ2 which is guaranteed by Hasse-Minkowski’s
Theorem (cf. [Ser73]). Let Ms be the curve corresponding to s ∈ Q×/Q×2 defined
by

Ms :

{
dw2 = d2t4 − 2adt2z2 + (a2 − 4b)z4,

dσw − (dτ − aµ)(dt2 − az2)− 4bµz2 = su2.
(2.3)

Then d ∈ S̃(φ)(E/Q) if and only if there exists s ∈ Q(S, 2) such that Ms is locally
solvable everywhere.

Proof. Let w = 1√
d
(x1− b

x1
), t = y1√

dx1
, z = 1 where (x1, y1) ∈ E, then homogeneous

space of d ∈ S(φ)(E/Q) is
Cd : dw

2 = d2t4 − 2adt2z2 + (a2 − 4b)z4.

If d ∈ S̃(φ)(E/Q), let ψ map (x2, y2) to (x1, y1), then x1 =
y22
4x2

2
.

E′ ψ // E

��

φ // E′

Cd

OO >>||||||||

Take

u =

√√
dσ − (dτ − aµ)

s
· x2(2x1µ+

√
dσ + dτ − aµ)

µy2
,

then after some calculations, we get Equation (2.3). The remainder of the lemma
follow from [BSD65] §5, Lemma 8 and 10. �

2.2. Our situation. Let (a, b) = (0,−n2), (3n, 2n2) and (−3n, 2n2), then (−2a, a2−
4b) = (0, 4n2), (−6n, n2) and (6n, n2) respectively, we get the elliptic curves Ei and
E′
i in the beginning of this paper. In our case, S = {∞, prime factors of 2m} and

Q(S, 2) is identified with the factor set of 2m.
We apply the diagram (2.2) to the isogenies ψ ◦φ : Ei → Ei and φ◦ψ : E′

i → E′
i,

for the first case, ψ and ψS are both injective; for the second one,

ker
(
φ :

E(Q)

ψE′(Q)
→ E′(Q)

2E′(Q)

)
= ker

(
φS : S(ψ)(E′/Q) → S(2)(E′/Q)

)
is Z/2Z. The proposition below shows that if the images of Selmer groups are
minimal, then n is a non-congruent number.

Proposition 2.3. Let E = Ei and E′ = E′
i.

(1) If #S̃(φ)(E/Q) = 1 and #S̃(ψ)(E′/Q) = 4, then we have
rankE(Q) = rankE′(Q) = 0. (2.4)

Moreover, if #S(φ)(E/Q) = 1, then
Ш(E/Q)[2∞] = 0, Ш(E′/Q)[2∞] ∼= S(ψ)(E′/Q)/(Z/2Z)2; (2.5)
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if #S(ψ)(E′/Q) = 4,

Ш(E/Q)[2∞] ∼= S(φ)(E/Q), Ш(E′/Q)[2∞] = 0. (2.6)

(2) If #S̃(φ)(E/Q) < 4 and rankF2
S(φ)(E/Q) is even, then #S̃(φ)(E/Q) = 1; if

#S̃(ψ)(E′/Q) < 16 and rankF2
S(ψ)(E′/Q) is even, then #S̃(ψ)(E′/Q) = 4.

Proof. (1) Since E(Q)tor ∩ ψE′(Q) = {O} and #E(Q)tor = 4, by the diagram, we
have

4 ≤ #E(Q)/ψE′(Q) ≤ #S̃(ψ)(E′/Q),

1 ≤ #E′(Q)/φE(Q) ≤ #S̃(φ)(E/Q).

Now if #S̃(φ)(E/Q) = 1 and #S̃(ψ)(E′/Q) = 4, all inequalities above become
equalities, which implies #E(Q)/2E(Q) = 4 and rankE(Q) = rankE′(Q) = 0.

If moreover #S(φ)(E/Q) = 1, then

S(2)(E/Q) = (Z/2Z)2, Ш(E/Q)[2] = 0,

S(2)(E′/Q) =
S(ψ)(E′/Q)

Z/2Z
, Ш(E′/Q)[2] =

S(ψ)(E′/Q)

(Z/2Z)2
.

Hence Ш(E/Q)[2∞] = 0 and Ш(E/Q)[2kφ] = 0. By the exact sequence

0 →Ш(E′/Q)[ψ] →Ш(E′/Q)[2k] →Ш(E/Q)[2k−1φ],

we have for every k ∈ N+, Ш(E′/Q)[2k] ∼=Ш(E′/Q)[ψ], and thus

Ш(E′/Q)[2∞] ∼=Ш(E′/Q)[ψ] ∼= S(ψ)(E′/Q)/(Z/2Z)2.

Ditto for #S(ψ)(E′/Q) = 4.
(2) By the existence of the Cassels’ skew-symmetric bilinear form on Ш (cf.

[BSD65] P95 or[Cas62]), the F2-ranks of S(φ)(E/Q) and S̃(φ)(E/Q) have the same
parity, which implies S̃(φ)(E) = {1}. Ditto for S(ψ)(E′/Q). �

Proposition 2.3 is crucial in this paper. In the following we shall give explicit
computation of the Selmer groups such that the assumptions of the Proposition are
satisfied in the cases corresponding to our Main Theorems.

2.3. The Selmer groups S(φ) and S(ψ). For any d | 2m, we let d′ = d/(2, d)
be the odd part of d. We list the conditions for Ci,d, C ′

i,d locally solvable below.
For the computation, one only needs to consider the valuations and use Hensel’s
Lemma. We omit the details here (cf. [OZ14, XZ09]).

Proposition 2.4. (1) The sets C1,d(Q∞), C2,d(Q∞) and C ′
3,d(Q∞) are non-empty

if and only if d > 0, the sets C ′
1,d(Q∞), C ′

2,d(Q∞) and C3,d(Q∞) are always non-
empty.

(2) The conditions on d for Cd(Q2) 6= ∅ are listed as follows:



ON SECOND 2-DESCENT AND NON-CONGRUENT NUMBERS 7

n d odd d even

C1,d
odd d ≡ 1 mod 4 d′ ≡ 1 mod 4, n ≡ ±1 mod 8
even d ≡ 1 mod 8 impossible

C2,d

odd n ≡ 1 mod 4, d ≡ 1 mod 8 impossibleor n ≡ 3 mod 4, d ≡ ±1 mod 8

even d ≡ 1 mod 8
m ≡ 7, d′ ≡ 1 mod 8

or m ≡ 5, d′ ≡ 7 mod 8

C3,d

odd n ≡ 3 mod 4, d ≡ 1 mod 8 impossibleor n ≡ 1 mod 4, d ≡ ±1 mod 8
even d ≡ 1 mod 8 m ≡ 1 mod 4, d′ ≡ 1 mod 8

The conditions of d for C ′
d(Q2) 6= ∅ are listed as follows:

n d odd d even

C ′
1,d

odd d or n/d ≡ ±1 mod 8 impossible
even arbitrary arbitrary

C ′
2,d

odd d′ or −n/d′ ≡ 1 mod 4
even m ≡ 1, 3 or m ≡ 5, d′ ≡ 1, 3 or m ≡ 7, d′ ≡ ±1 mod 8

C ′
3,d

odd d′ or n/d′ ≡ 1 mod 4
even m ≡ 5, 7 or m ≡ 3, d′ ≡ 1, 3 or m ≡ 1, d′ ≡ ±1 mod 8

(3) The conditions of d for Cd(Qp) or C ′
d(Qp) 6= ∅ for odd prime p | n are listed

as follows:
p | d p | (2n/d)

C1,d p ≡ 1 mod 4,
(
n/d
p

)
= 1

C2,d p ≡ ±1 mod 8,
(
n/d
p

)
= 1

(
d
p

)
= 1

C3,d p ≡ ±1 mod 8,
(

−n/d
p

)
= 1

C ′
1,d

(
n/d
p

)
= 1 for all p ≡ 1 mod 4

(
d
p

)
= 1 for all p ≡ 1 mod 4

C ′
2,d

(
−n/d
p

)
= 1 for all p ≡ ±1 mod 8

(
d
p

)
= 1 for all p ≡ ±1 mod 8

C ′
3,d

(
n/d
p

)
= 1 for all p ≡ ±1 mod 8

(
d
p

)
= 1 for all p ≡ ±1 mod 8

Corollary 2.5. (1) Assume n ≡ 1 mod 8, pi ≡ 1 mod 4 and rank A = k − 1.
Assume −→v is a root of the equation A−→x = D−→

1 and let d = d(−→v ). Then

S(φ)(E1/Q) = {1, n, 2d, 2n/d}, S(ψ)(E′
1/Q) = {±1,±n}.

(2) Assume m ≡ 1 mod 8, pi ≡ ±1 mod 8, and rank A = rank(A + C) = k − 1.
Assume −→v is the nonzero root of the equation (A + C)−→x =

−→
0 and let d = d(−→v ).

(i) If n = m, then

S(φ)(E3/Q) = {1, d,−n,−n/d}, S(ψ)(E′
3/Q) = {1, 2, n, 2n}.

(ii) If n = 2m, then

S(φ)(E3/Q) =

{
{1, 2, d, 2d}, if d ≡ 1 mod 8;

{1, 2,−m/d,−n/d}, if d ≡ −1 mod 8,

and S(ψ)(E′
3/Q) = {1, 2,m, n}.
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Proof. We only show (1). The rest is similar.
Suppose d ∈ S(φ)(E1/Q). Since C1,d(Q∞) and C1,d(Q2) are both nonempty,

0 < d | 2n. If d is odd, then Proposition 2.4(3) implies A−→v (d) = −→
0 . Thus −→v =

−→
0

or −→1 and d = 1, n. If d = 2d′ is even, Proposition 2.4(3) implies that A−→v (d′) = D−→
1 ,

thus d = 2d(−→v ) or 2n/d(−→v ) for −→v a solution of A−→x = D−→
1 .

Suppose d ∈ S(ψ)(E′
1/Q). By Proposition 2.4(1) and (2), d | n and d ≡ ±1 mod

8. By Proposition 2.4(3), A−→v (d) = −→
0 . Hence −→v (d) = −→

0 or −→
1 as rank A = k − 1

and d = ±1 or ±n. �

Corollary 2.6. Suppose m = p1 · · · pk is a squarefree odd positive integer and
n = m or 2m such that n ≡ 1, 2 or 3 mod 8.

(1) Assume pi ≡ 3 mod 4. If n = m and D 6= O, then S(φ)(E1/Q) = {1} and

S(ψ)(E′
1/Q) =

{
{d : d | n, d ≡ ±1 mod 8}, if n ≡ 1 mod 8;

〈−1, pi〉 if n ≡ 3 mod 8.

If n = 2m, then S(φ)(E1/Q) = {1} and S(ψ)(E′
1/Q) = 〈−1, 2, pi〉.

(2) Assume pi ≡ ±3 mod 8. If n = m, then S(φ)(E2/Q) = {1} and

S(ψ)(E′
2/Q) =

{
〈−1, 2, pi〉, if n ≡ 1 mod 8;

{d, 2d : d ≡ 1 mod 4, d | n} if n ≡ 3 mod 8.

If n = 2m, then S(φ)(E2/Q) = {1} and

S(ψ)(E′
2/Q) =

{
〈−1, 2, pi〉, if m ≡ 1 mod 8;

{d, 2d : d ≡ 1, 3 mod 8, d | n} if m ≡ 5 mod 8.

(3) Assume pi ≡ ±3 mod 8. If n = m, m ≡ 3 mod 8 or C 6= O, then S(φ)(E3/Q) =
{1} and

S(ψ)(E′
3/Q) =

{
{d, 2d : 0 < d | n, d ≡ 1 mod 4} if n ≡ 1 mod 8;

{〈2, pi〉} if n ≡ 3 mod 8.

If n = 2m, then S(φ)(E3/Q) = {1} and

S(ψ)(E′
3/Q) =

{
〈2, pi〉, if m ≡ 5 mod 8;

〈2, p1p2, p1p3, · · · , p1pk〉, if m ≡ 1 mod 8.

In particular, in all cases, S(φ) = {1} and S(ψ) has even F2-rank.

Proof. We only pick one case to prove, the remaining cases are similar. In (1), if
n = m is odd, by Proposition 2.4, S(φ)(E1/Q) ⊆ {1, 2}. But if 2 ∈ S(φ)(E1/Q),
C1,2(Qp) 6= ∅ implies

(
2
p

)
= 1 and then D = O. By the same Proposition, d ∈

S(ψ)(E′
1/Q) if and only if d is odd and d or n/d ≡ ±1 mod 8. If n = 2m is even,

then S(φ)(E1/Q) = {1} and S(ψ)(E′
1/Q) = 〈−1, 2, pi〉 follow from Proposition 2.4

directly. �
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2.4. The images S̃(φ) and S̃(ψ). We first suppose (a, b) = (a1n, b1n
2) where

a1, b1 ∈ Z and b1 | 2∞. Let E = Ea,b and d ∈ S(φ)(E/Q). We want to find a
necessary condition for d ∈ S̃(φ)(E/Q).

By abuse of notation, write d = τ2 − b1µ
2 and select the triple (σ, τ, µ) in

Lemma 2.2 to be (d, τ + 1
2a1µ,

dµ
2n ). Then the defining equations in (2.3) can be

written as

Ms :

w
2 = d

((
t2 − a1(nz

2/d)
)2 − 4b1(nz

2/d)2
)
,

w − τ
(
t2 − a1(nz

2/d)
)
− 2b1µ(nz

2/d) = su2.
(2.7)

Proposition 2.7. Suppose d ∈ S(φ)(E/Q) and p | m an odd prime number. If
p | d, then

√
b1 ∈ Qp. The curve Ms is locally solvable

(1) at p | d if and only if for
√
b1 ∈ Qp chosen such that p | τ −

√
b1µ, either

p | s,
(
n/d

p

)
=

(
a1 − 2

√
b1

p

)
,

(
n/s

p

)
=

(
µ

p

)
,

or

p - s,
(
n/d

p

)
=

(
a1 + 2

√
b1

p

)
,

(
s

p

)
=

(
−µ
p

)(
n/d

p

)
;

(2) at p | 2m
d if and only if either

p | s,
(
d

p

)
=

(
a21 − 4b1

p

)
,

(
n/s

p

)
=

(
d

p

)(
±
√
d(a21 − 4b1) + a1τ − 2b1µ

p

)
,

or

p - s,
(
d

p

)
= 1,

(
s

p

)
=

(
±
√
d− τ

p

)
.

Here ± means one of them.

Proof. The proof and calculation are similar to [OZ14] §3.2. We use the notation
x = O(y) if the p-adic valuation of v(x) ≥ v(y).

The case p | d. We may assume z = 1, v(t) = 0, v(w) > 0. It’s easy to see
t2 ≡ (a1 ± 2

√
b1)

n
d (mod p).

(i) If v(su2) ≥ 3, then by combining the two expressions of w2, we obtain(
µ(t2 − a1n

d
) +

2nτ

d

)2
= O(su2).

Then t2 ≡ (a1µ−2τ)n
dµ ≡ (a1 − 2

√
b1)

n
d (mod p) and

(
n/d
p

)
=
(
a1−2

√
b1

p

)
. Set

β = t2 − (a1µ−2τ)n
dµ , then

w2 =d

(
4τ2n2

µ2d2
− 4nτβ

dµ
+ β2 − 4b1(

n

d
)2
)

=
4n2

µ2
(1− τµβ

n
+
dµ2β2

4n2
).

Take the square root on both sides,

w = ±
(
2n

µ
− τβ − b1nµ(

µβ

2n
)2 +O(β3/p2)

)
.
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On the other hand, w = − 2n
µ + τβ + su2. Hence the sign must be negative and

su2 = b1nµ(
µβ
2n )

2 +O(β
3

p2 ), thus p | s,
(
n/s
p

)
=
(
µ
p

)
.

(ii) If v(bu2) ≤ 2 and t2 ≡ (a1−2
√
b1)n

d (mod p), then
(
n/d
p

)
=
(
a1−2

√
b1

p

)
. Let

t2 =
(a1 − 2

√
b1)n

d
− p2α

n
√
b1
,

then one can see
w2 = 4p2α(1 +

p2dα

4n2b1
),

w = ±2p
√
α(1 +

p2dα

8n2b1
+O(p2)),

and

su2 =
p2τ

n
√
b1
(
√
α± n

√
b1

pτ
)2 +

n
√
b1

dτ
(τ −

√
b1µ)

2 ± p3d

4n2b1
α3/2 +O(p3).

If v(su2) = 2, then
√
α ≡ ∓n

√
b1

pτ (mod p), and

su2 =
n
√
b1

4dτ3
(τ −

√
b1µ)

3(3τ +
√
b1µ) +O(p3) = O(p3),

that is a contradiction! Thus v(su2) = 1 and p | s,
(
n/s
p

)
=
(
τ
√
b1
p

)
=
(
µ
p

)
.

(iii) If v(su2) ≤ 2 and t2 ≡ (a1+2
√
b1)n

d (mod p), then
(
n/d
p

)
=
(
a1+2

√
b1

p

)
and

su2 = −2
√
b1τn/d− 2b1µn/d+O(p) = −4b1nµ/d+O(p),

thus p - s,
(
s
p

)
=
(

−µ
p

)(
n/d
p

)
.

The case p | 2m
d .

(i) If v(z) ≥ v(t) = v(w)/2, we may assume t = 1, v(w) = 0, v(z) ≥ 0. Then(
d
p

)
= 1 and

w = ±
√
d(1− a1(nz

2/d)− 2b1(nz
2/d)2 + · · · )

= τ − (a1τ + 2b1µ)
nz2

d
+ su2.

Notice that (
√
d− τ)(−

√
d− τ) = b1µ

2 and ±
√
d− τ are co-prime. Choose suitable√

d or τ such that
√
d− τ 6= 0, then v(

√
d− τ) is even and

(√
d−τ
p

)
is well defined.

We may assume that p - (
√
d + τ). If w ≡ −

√
d mod p or p - µ, then su2 =

−
√
d− τ +O(p). Otherwise w ≡

√
d mod p and v(µ) ≥ 1, then

b1

(
µ(1− a1nz

2

d
) + 2τ

nz2

d

)2
= −su2(2τ +O(p))

thus p - s and
(
s
p

)
=
(

−2τ
p

)
=
(

±
√
d−τ
p

)
.

(ii) If v(z) < v(t), we may assume z = 1, w = pw1, t = pt1, then

w2
1 = (a21 − 4b1)d(

n

pd
)2 +O(p),



ON SECOND 2-DESCENT AND NON-CONGRUENT NUMBERS 11

thus
(
d
p

)
=
(
a21−4b1

p

)
and

w1 = ±
√

(a21 − 4b1)d(
n

pd
) +O(p),

su2 =
n

d
(a1τ − 2b1µ±

√
(a21 − 4b1)d+O(p)).

Notice that

(a1τ − 2b1µ+
√
(a21 − 4b1)d)(a1τ − 2b1µ−

√
(a21 − 4b1)d) = b1(a1µ− 2τ)2.

Thus p | s,
(
n/s
p

)
=
(
d
p

)(
a1τ−2b1µ±

√
(a21−4b1)d

p

)
. �

To compute S̃(φi)(Ei/Q), we are in the cases (a1, b1) = (0,−1), (3, 2) and (−3, 2)
respectively.

Corollary 2.8. Suppose d ∈ S(φi)(Ei/Q). Write d = τ2 − b1µ
2, and assume(

b1
p

)
= 1 and

(
−a1 + 2

√
b1

p

)
=

(
−a1 − 2

√
b1

p

)
= 1 for all p | m.

Choose
√
b1 ∈ Z/mZ such that p | τ −

√
b1µ for all p | d′. Then Ms is locally

solvable
(1) at p | d′ only if either

p | s,
(
n/d

p

)
=

(
−1

p

)
,

(
n/s

p

)
=

(
−2(τ +

√
b1µ)

p

)(
−
√
b1
p

)
,

or
p - s,

(
n/d

p

)
=

(
−1

p

)
,

(
s

p

)
=

(
−2(τ +

√
b1µ)

p

)(
−
√
b1
p

)
;

(2) at p | md′ only if either

p | s,
(
d

p

)
= 1,

(
n/s

p

)
=

(
−2(τ +

√
b1µ)

p

)
,

or
p - s,

(
d

p

)
= 1,

(
s

p

)
=

(
−2(τ +

√
b1µ)

p

)
.

In particular, if Ei = E1 or E3 for n as in Theorem 1.1(1) or (3), then
[
−
√
b1

d′

]
+[

−2(τ+
√
b1µ)

m

]
= 1 implies d /∈ S̃(φ)(Ei/Q).

Proof. For p | d, we have(
µ

p

)
=

(
4b1µ

p

)
=

(
−
√
b1
p

)(
−2(τ +

√
b1µ)

p

)
.

For p | nd , if p | s,

− 2(
√
d− τ)(τ +

√
b1µ) = (τ +

√
b1µ−

√
d)2, (2.8)(

n/s

p

)
=

(
−2(τ +

√
b1µ)

p

)
.

If p - s, notice that
(a21 − 4b1)d = (−a1τ + 2b1µ)

2 − b1(2τ − a1µ)
2,
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s

p

)
=

(
−2(−a1τ + 2b1µ+

√
b1(2τ − a1µ))

p

)
=

(
−2(τ +

√
b1µ)

p

)
.

Then the local solvability follows from Proposition 2.7.
If Ei = E1, (a1, b1) = (0,−1), then for any p | d, p ≡ 1 mod 4,

(
2
√
−1
p

)
= 1;

if Ei = E3, (a1, b1) = (−3, 2), then for any p | d, p ≡ 1 mod 8,
(

3±2
√
2

p

)
= 1.

If d ∈ S̃(φi)(Ei/Q), then there exists s ∈ Q(S, 2) satisfying the above conditions.
Write ε = s/d(−→v (s)) = ±1,±2. Then

the i-th entry of A−→v (s) =


[
−2(τ+

√
b1µ)

p

]
+
[
−
√
b1
p

]
+
[
ε
p

]
, if pi | d[

−2(τ+
√
b1µ)

p

]
+
[
ε
p

]
, if pi | md .

But the image space of A is a subspace of x1 + · · · + xk = 0 and notice that
m ≡ 1 mod 8,

∑[
ε
p

]
=
[
ε
m

]
= 0, thus

[
−
√
b1

d′

]
+
[
−2(τ+

√
b1µ)

m

]
= 0. �

To compute S̃(ψi)(E′
i/Q), we are in the cases (a1, b1) = (0, 4), (−6, 1) and (6, 1)

respectively. In these cases b1 is a square number. We will fix the pair (τ, µ).

Corollary 2.9. Suppose d ∈ S(ψi)(E′
i/Q) and p | m an odd prime number.

(1) If i = 1, then Ms for (τ, µ) = (d+1
2 , d−1

4 ) is locally solvable:
(i) at p | d if and only if

p | s,
(
n/d

p

)
= 1,

(
n/s

p

)
=

(
−1

p

)
;

p - s,
(
n/d

p

)
=

(
−1

p

)
,

(
s

p

)
=

(
−1

p

)
;

(ii) at p | nd if and only if

p | s,
(
d

p

)
=

(
−1

p

)
,

(
n/s

p

)
=

(
−2

p

)
;

p - s,
(
d

p

)
= 1,

(
s

p

)
=

(
−2

p

)
.

(2) If i = 2, then Ms for (τ, µ) = (d+1
2 , d−1

2 ) is locally solvable:
(i) at p | d if and only if

p | s,
(
n/d

p

)
=

(
−1

p

)
,

(
n/s

p

)
=

(
−2

p

)
;

p - s,
(
n/d

p

)
=

(
−2

p

)
,

(
s

p

)
=

(
−1

p

)
;

(ii) at p | nd if and only if

p | s,
(
d

p

)
=

(
2

p

)
,

(
n/s

p

)
=

(
−1

p

)
;

p - s,
(
d

p

)
= 1,

(
s

p

)
=

(
−2

p

)
.

(3) For i = 3, then Ms for (τ, µ) = (d+1
2 , d−1

2 ) is locally solvable
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(i) at p | d if and only if

p | s,
(
n/d

p

)
=

(
2

p

)
,

(
n/s

p

)
=

(
−2

p

)
;

p - s,
(
n/d

p

)
= 1,

(
s

p

)
=

(
2

p

)
;

(ii) at p | nd if and only if

p | s,
(
d

p

)
=

(
2

p

)
,

(
n/s

p

)
=

(
2

p

)
;

p - s,
(
d

p

)
= 1,

(
s

p

)
=

(
−2

p

)
.

Proof. This follows from Proposition 2.7 easily, one only needs to use the fact
−2d(±

√
d− τ) = (d∓

√
d)2. �

3. Proof of the main theorems

Proof of Theorem 1.1. (1) One can find a detailed argument in [OZ14].
Under the assumption, by Corollary 2.5(1),

S(φ)(E1/Q) = {1, n, 2d, 2n/d}, S(ψ)(E′
1/Q) = {±1,±n}

where d = d(−→v ) for A−→v = D−→
1 . Write 2d = τ2 + µ2 and choose

√
−1 in Z/nZ

such that p | τ −
√
−1µ for all p | d. By Corollary 2.8, if

[
τ+

√
−1µ
n

]
+
[
2
d

]
= 1, then

2d /∈ S̃(φ)(E1/Q). By Proposition 2.3, S̃(φ)(E1/Q) = {1} and n is non-congruent.
(2) By Corollary 2.5(2),

S(φ)(E3/Q) = S(ψ)(E′
3/Q) = {1, 2,m, n}.

Write 2 = 22 − 2 × 12, τ = 2, µ = 1,
[
−2(2+

√
2)

m

]
=
[
2+

√
2

m

]
. By Corollary 2.8,(

2+
√
2

m

)
= −1 implies 2 /∈ S̃(φ)(E3/Q). By Proposition 2.3, S̃(φ)(E3/Q) = {1} and

n is non-congruent. �

Proof of Theorem 1.3. We first show (1).
(1) For n = m odd, if (A2 + A + D)−→x =

−→
0 ,

−→
1 has at most 2 solutions, then

D 6= O. Indeed, if D = O, then pi ≡ 7 mod 8 and k is even. If rank A < k − 1, then
A−→x =

−→
0 and (A2+A)−→x =

−→
0 have more than 4 solutions. If rank A = k−1, let −→v

be a solution of A−→x =
−→
1 , then −→

0 , −→1 , −→v and −→v +
−→
1 all satisfy (A2 + A)−→x =

−→
0

or −→
1 . Hence we can apply Corollary 2.6(1).
Suppose d ∈ S̃(ψ)(E′

1/Q). If d > 0, let −→v = −→v (d), then

the i-th entry of A−→v =


[
d
pi

]
, if pi - d;[

n/d
pi

]
, if pi | d.
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Suppose s ∈ Q(S, 2) such that Ms is locally solvable everywhere. Let −→s = −→v (s)
and s0 = d(−→s ). Then 2 - s0 > 0 and s = ±s0,±2s0. If s = s0, by Corollary 2.9 (1),

if p | d,
[
n/d

p

]
= 0, then p | s,

[
n/s

p

]
= 1;

if p | d,
[
n/d

p

]
= 1, then p - s,

[
s

p

]
= 1;

if p - d,
[
d

p

]
= 1, then p | s,

[
n/s

p

]
= 1 +

[
2

p

]
;

if p - d,
[
d

p

]
= 0, then p - s,

[
s

p

]
= 1 +

[
2

p

]
.

Then −→s = (A + I)−→v and A−→s =
−→
1 + D(

−→
1 + −→v ). Thus (A2 + A + D)−→v =

−→
1 +

D−→
1 . Similarly, for s = −s0, 2s0,−2s0, we have (A2 + A + D)−→v = D−→

1 ,
−→
1 ,

−→
0

respectively. If d < 0, then −→s = (A + I)−→v +
−→
1 ; but A−→1 =

−→
0 , so we still have

(A2+A+D)−→v =
−→
0 ,

−→
1 ,D−→

1 ,D−→
1 +

−→
1 respectively for s = s0,−s0, 2s0,−2s0. Hence

±d,±n/d ∈ S̃(ψ)(E′
1/Q) only if

(A2 + A + D)−→v =
−→
0 ,

−→
1 .

If the equations have together at most 2 solutions, then there are at most 8 elements
in S̃(ψ)(E′

1/Q). By Proposition 2.3 and Corollary 2.6, #S̃(ψ)(E′
1/Q) = 4 and n is

a non-congruent number.
For n = 2m even, similarly for odd d = d0 = d(−→v ), if s = s0, then −→s =

(A+D+ I)−→v and A−→s =
−→
1 +D(−→v +−→s +

−→
1 ). Thus ((A+D)2 +A)−→v =

−→
1 +D−→

1 ;
if s = −s0, 2s0,−2s0, then ((A + D)2 + A)−→v = D−→

1 ,
−→
1 ,

−→
0 . For d = −d0, ((A +

D)2 + A)−→v =
−→
0 ,

−→
1 ,D−→

1 ,D−→
1 +

−→
1 if s = ±s0,±2s0 respectively; for d = ±2d0,

((A + D)2 + A)(−→v +
−→
1 ) =

−→
0 ,

−→
1 ,D−→

1 ,D−→
1 +

−→
1 respectively. Hence ±d,±2n/d ∈

S̃(ψ)(E′
1/Q) only if

((A + D)2 + A)−→v =
−→
0 ,

−→
1 ,D−→

1 ,D−→
1 +

−→
1 .

If the equations have together at most 2 solutions, then there are at most 8 elements
in S̃(ψ)(E′/Q). By Proposition 2.3 and Corollary 2.6, #S̃(ψ)(E′

1/Q) = 4 and n is a
non-congruent number.

The proofs of (2) and (3) are similar to (1). We suppose 2 - d > 0 and −→v = −→v (d)
in the following.

(2) For n = m, then d, 2d,−n/d,−2n/d ∈ S̃(ψ)(E′
2/Q) only if

(A2 + AC + C)−→v =
−→
0 ,

−→
1 ,C−→1 ,C−→1 +

−→
1 .

If the equations have together at most 2 solutions, then #S̃(ψ)(E′
2/Q) ≤ 8 and n

is a non-congruent number.
For n = 2m, then d, 2d,−m/d,−n/d ∈ S̃(ψ)(E′

2/Q) only if

(A2 + AC + I)−→v =
−→
0 ,

−→
1 ,C−→1 ,C−→1 +

−→
1 .

If the equations have together at most 2 solutions, then #S̃(φ)(E2/Q) ≤ 8 and n is
a non-congruent number.
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(3) For n = m, if the equations (A2 + CA + C)−→x =
−→
0 ,

−→
1 have together at most

2 solutions, then C 6= O or n ≡ 3 mod 8. Indeed, if C = O and n ≡ 1 mod 8, then
pi ≡ 5 mod 8 and k is even. Similar to the proof of D 6= O in (1), one can show
A2−→x = 0 has at least 4 solutions.

Thus d, 2d, n/d, 2n/d ∈ S̃(ψ)(E′
3/Q) only if

(A2 + CA + C)−→v =
−→
0 ,

−→
1 .

If the equations have together at most 2 solutions, then #S̃(ψ)(E′
3/Q) ≤ 8 and n

is a non-congruent number.
For n = 2m even, then d, 2d,m/d, n/d ∈ S̃(ψ)(E′

3/Q) only if

(A2 + CA + I)−→v =
−→
0 ,C−→1 .

If the equations have together at most 2 solutions, then #S̃(ψ)(E′
3/Q) ≤ 8 and n

is a non-congruent number. �
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